
 

LTI/API Scoping 
Documentation 
LTI 1.3 Integration 

Overview 

All Day TA implements LTI 1.3 (Learning Tools Interoperability) to provide seamless 
integration with Learning Management Systems. This allows institutions to embed All Day 
TA directly within their LMS and enable grade passback functionality from the All Day TA 
feature Intelligent Quiz. 

Supported LTI Features 

1. Dynamic Registration 

●​ Endpoint: /lti/register 
●​ Method: GET, POST 
●​ Description: Automated platform registration using OpenID Connect discovery 
●​ Required Parameters: 

○​ openid_configuration: OpenID configuration URL from the platform 
○​ registration_token: Platform-provided token for authorization 
○​ org_id: (Optional) Organization ID for hierarchical access 
○​ faculty_id: (Optional) Faculty ID for hierarchical access 
○​ department_id: (Optional) Department ID for hierarchical access 

2. OIDC Login Flow 

●​ Endpoint: /lti/login 
●​ Method: GET, POST 
●​ Description: Initiates the LTI login flow with the platform 
●​ Required Parameters: 

○​ iss: Platform issuer URL 



 

○​ login_hint: User identifier from the platform 
○​ target_link_uri: Target launch URL 
○​ client_id: OAuth client ID 
○​ lti_message_hint: (Optional) Additional launch context 

3. LTI Launch 

●​ Endpoint: /lti/launch 
●​ Method: GET, POST 
●​ Description: Handles authenticated LTI launches and redirects users appropriately 
●​ Supported Launch Types: 

○​ Resource link launches (course navigation) 
○​ Deep linking requests (assignment selection) 
○​ Deep linking content item launches (graded assignments) 

4. Deep Linking 

●​ Endpoint: /lti/deep-linking/response 
●​ Method: POST 
●​ Description: Creates content items for assignment integration 
●​ Required Parameters: 

○​ issuer: Platform issuer 
○​ client_id: OAuth client ID 
○​ deployment_id: LTI deployment ID 
○​ context_id: LMS course/context ID 
○​ deep_link_return_url: Platform return URL 
○​ module_id: All Day TA module ID to link 

5. Assignment and Grade Services (AGS) 

●​ Capability: LTI 1.3 Grade Passback 
●​ Scope Required: https://purl.imsglobal.org/spec/lti-ags/scope/score 
●​ Features: 

○​ Automatic grade synchronization 
○​ Progress tracking (InProgress, Completed) 
○​ Grading status (FullyGraded) 
○​ Audit logging of all grade submissions 



None

None

None

JSON

 

LTI Claims Utilized 

Standard LTI Claims 

https://purl.imsglobal.org/spec/lti/claim/context 
https://purl.imsglobal.org/spec/lti/claim/resource_link 
https://purl.imsglobal.org/spec/lti/claim/roles 
https://purl.imsglobal.org/spec/lti/claim/deployment_id 
https://purl.imsglobal.org/spec/lti/claim/message_type 
https://purl.imsglobal.org/spec/lti/claim/version 
https://purl.imsglobal.org/spec/lti/claim/custom 

Assignment and Grade Services Claims 

https://purl.imsglobal.org/spec/lti-ags/claim/endpoint 

Deep Linking Claims 

https://purl.imsglobal.org/spec/lti-dl/claim/deep_linking_setting
s 
https://purl.imsglobal.org/spec/lti-dl/claim/content_items 
https://purl.imsglobal.org/spec/lti-dl/claim/data 

LTI Scopes Required 

From Platform Configuration 

{ 
  "scopes_supported": [ 



JSON

JSON

 

    "openid", 
    "https://purl.imsglobal.org/spec/lti-ags/scope/lineitem", 
    
"https://purl.imsglobal.org/spec/lti-ags/scope/result.readonly", 
    "https://purl.imsglobal.org/spec/lti-ags/scope/score" 
  ] 
} 

LTI Placements 

Course Navigation 

{ 
  "type": "LtiResourceLinkRequest", 
  "label": "All Day TA", 
  "icon_uri": 
"https://alldayta.com/static/media/logo.65cf0bb930020eb0f0f8f1e09
f1feeb8.svg", 
  "placements": ["course_navigation"] 
} 

Assignment Selection (Deep Linking) 

{ 
  "type": "LtiDeepLinkingRequest", 
  "label": "Intelligent Quiz", 
  "icon_uri": 
"https://alldayta.com/static/media/logo.65cf0bb930020eb0f0f8f1e09
f1feeb8.svg", 
  "placements": ["assignment_selection"] 
} 



 

JWKS Endpoint 

●​ Endpoint: /lti/jwks/<platform_id> 
●​ Method: GET 
●​ Description: Provides public key for JWT validation 
●​ Response Format: JWK Set (RFC 7517) 

Role Detection 

The system detects user roles using the LTI roles claim and grants appropriate permissions: 

Instructor Roles (Full Access) 

●​ Instructor 
●​ Teaching Assistant 
●​ Administrator 
●​ Content Developer 

Student Roles (Limited Access) 

●​ All other roles default to student permissions 

 

Canvas API Integration 

Overview 

All Day TA integrates with Canvas LMS using OAuth 2.0 for authentication and Canvas REST 
API for content import. 

OAuth 2.0 Configuration 

Authorization Flow 

●​ Authorization Endpoint: {canvas_base_url}/login/oauth2/auth 



JavaScript

 

●​ Token Endpoint: {canvas_base_url}/login/oauth2/token 
●​ Scopes Required: url:GET|/api/v1/courses url:GET|/api/v1/users/self 

OAuth Endpoints 

●​ Login Initiation: /api/oauth/login/canvas 
●​ Callback Handler: /api/oauth/callback/canvas 

Canvas API Endpoints Used 

1. User Information 

●​ Endpoint: /api/v1/users/self 
●​ Method: GET 
●​ Purpose: Retrieve authenticated user details 
●​ Required Data: User ID, name, email 

2. Course List 

●​ Endpoint: /api/v1/courses 
●​ Method: GET 
●​ Purpose: Fetch courses accessible to the authenticated user 
●​ Filters: Active courses, instructor/admin access 

3. Course Content 

●​ Endpoint: /api/v1/courses/{course_id} 
●​ Method: GET 
●​ Purpose: Retrieve course modules, files, and assignments 
●​ Includes: Modules, files, pages, assignments 

API Scopes 

{ 
  "scope": "url:GET|/api/v1/courses url:GET|/api/v1/users/self" 



Python

 

} 

Integration Setup Requirements 

Required Configuration 

1.​ Client ID: Provided by Canvas administrator 
2.​ Client Secret: Provided by Canvas administrator 
3.​ Base URL: Canvas instance URL (e.g., https://canvas.university.edu) 
4.​ Redirect URI: https://yourdomain.com/api/oauth/callback/canvas 

Database Storage 

{ 
  "provider": "canvas", 
  "client_id": "<canvas_client_id>", 
  "client_secret": "<canvas_client_secret>", 
  "base_url": "<canvas_instance_url>", 
  "redirect_uri": "<redirect_uri>", 
  "is_active": true, 
  "org_id": <organization_id>, 
  "faculty_id": <faculty_id>,  # Optional 
  "department_id": <department_id>  # Optional 
} 

 

D2L (Brightspace) API Integration 

Overview 

All Day TA integrates with D2L Brightspace using OAuth 2.0 for authentication and D2L 
Valence API for content access. 



 

OAuth 2.0 Configuration 

Authorization Flow 

●​ Authorization Endpoint: https://auth.brightspace.com/oauth2/auth 
●​ Token Endpoint: https://auth.brightspace.com/core/connect/token 
●​ API Base URL: {d2l_instance_url} (institution-specific) 
●​ Scopes Required: core:*:* users:userdata:read 

OAuth Endpoints 

●​ Login Initiation: /api/oauth/login/d2l 
●​ Callback Handler: /api/oauth/callback/d2l 

D2L API Endpoints Used 

1. User Information 
●​ Endpoint: /d2l/api/lp/1.50/users/whoami 
●​ Method: GET 
●​ Purpose: Get current user identifier 
●​ Endpoint: /d2l/api/lp/1.50/users/{user_id} 
●​ Method: GET 
●​ Purpose: Retrieve detailed user information 
●​ Required Data: User ID, first name, last name, email​

 

2. Course List (Not currently released to production) 

●​ Endpoint: /d2l/api/lp/{version}/enrollments/myenrollments/ 
●​ Method: GET 
●​ Purpose: Fetch user's enrolled courses 
●​ Filters: Active enrollments, instructor/admin roles 



JavaScript

Python

 

API Scopes 

{ 
  "scope": "core:*:* users:userdata:read" 
} 

Integration Setup Requirements 

Required Configuration 

1.​ Client ID: Provided by D2L administrator 
2.​ Client Secret: Provided by D2L administrator 
3.​ Base URL: D2L instance URL (e.g., https://brightspace.university.edu) 
4.​ Redirect URI: https://yourdomain.com/api/oauth/callback/d2l 

Database Storage 

{ 
  "provider": "d2l", 
  "client_id": "<d2l_client_id>", 
  "client_secret": "<d2l_client_secret>", 
  "base_url": "<d2l_instance_url>", 
  "redirect_uri": "<redirect_uri>", 
  "is_active": true, 
  "org_id": <organization_id>, 
  "faculty_id": <faculty_id>,  # Optional 
  "department_id": <department_id>  # Optional 
} 

 



JSON

 

OAuth Provider Integrations 

Google OAuth 2.0 

Configuration 

●​ Provider: Google 
●​ Server Metadata URL: 

https://accounts.google.com/.well-known/openid-configuration 
●​ Scopes: openid email profile 

Endpoints 

●​ Login: /api/oauth/login/google 
●​ Callback: /api/oauth/callback/google 

User Data Retrieved 

●​ Email address (primary identifier) 
●​ Full name 
●​ Google user ID 
●​ Email verification status 

OAuth Status Check 

Endpoint 

●​ URL: /api/oauth/status 
●​ Method: GET 
●​ Description: Check which OAuth providers are configured and active 

Response Example 

{ 
  "providers": { 



 

    "google": true, 
    "canvas": true, 
    "d2l": false 
  }, 
  "auto_create_users": false 
} 

OAuth Unlinking 

Endpoint 

●​ URL: /api/oauth/unlink/<provider> 
●​ Method: POST 
●​ Description: Disconnect OAuth provider from user account 
●​ Requirements: User must have alternative authentication method (password) 

 

Security and Best Practices 

LTI Security 

1. State and Nonce Management 

●​ State and nonce values are generated using os.urandom(16).hex() 
●​ Stored in database with 10-minute expiration 
●​ Validated during callback to prevent CSRF attacks 
●​ Automatically cleaned up after use or expiration 

2. JWT Validation 

●​ All ID tokens validated using platform's JWKS endpoint 
●​ Signature verification using RS256 algorithm 
●​ Claims validation includes: 



 

○​ Issuer (iss) 
○​ Audience (aud) 
○​ Nonce 
○​ Expiration with 60-second leeway 

3. Platform Registration 

●​ Supports dynamic registration via OpenID Connect 
●​ Generates unique RSA key pairs per platform 
●​ Keys stored securely in the database 
●​ JWKS endpoint exposes only public keys 

4. Grade Passback Security 

●​ Uses client_credentials grant with JWT assertion 
●​ Private key JWT authentication (not client_secret) 
●​ Access tokens obtained per-request (short-lived) 
●​ All grade submissions logged for audit trail 

OAuth Security 

1. Token Management 

●​ Access tokens stored in server-side sessions 
●​ Tokens never exposed to client-side JavaScript 
●​ Session-based authentication after the OAuth flow 
●​ Integration ID linked to the session for provider selection 

2. State Parameter 

●​ Generated using secrets.token_urlsafe(32) 
●​ Validated on callback to prevent CSRF 
●​ Expires after single use 

3. HTTPS Enforcement 

●​ All OAuth redirects are forced to HTTPS in production 
●​ Local development supports HTTP for testing 



 

API Security 

1. Authorization Checks 

●​ All API endpoints protected with @admin_required() decorator 
●​ Feature flag validation for LTI and gradebook endpoints 
●​ Hierarchical access control based on org/faculty/department ownership 

2. Access Token Validation 

●​ OAuth tokens validated on each API request 
●​ Provider-specific token refresh if supported 
●​ Automatic token expiration handling 

3. Rate Limiting 

●​ Gradebook submissions rate-limited per platform 
●​ Failed attempts logged and monitored 
●​ Retry logic with exponential backoff 

Data Privacy 

1. User Data 

●​ Minimal PII collection (email, name only) 
●​ User consent obtained during OAuth flow 
●​ Email verification status tracked 
●​ Option to auto-create users or require pre-registration 

2. LTI User Identifiers 

●​ Platform-specific user IDs stored separately 
●​ No cross-platform user correlation 
●​ Anonymous quiz session tokens for privacy 
●​ LTI context isolated per platform/deployment 



 

3. Session Management 

●​ Sessions tied to specific organizations 
●​ Database-tracked sessions for audit 
●​ Automatic session cleanup on logout 
●​ Last activity timestamps for session expiration 

Audit and Compliance 

1. Grade Passback Audit Log 

●​ Every grade submission logged with: 
○​ Practice session ID 
○​ LTI quiz session ID 
○​ Score given/maximum 
○​ Platform information 
○​ Success/failure status 
○​ Error details (if failed) 
○​ Timestamp 

2. Access Logs 

●​ OAuth authentication events logged 
●​ LTI launch events logged 
●​ Integration creation/modification logged 

3. Data Retention 

●​ OIDC states expire after 10 minutes 
●​ Old states automatically cleaned up 
●​ Session activity tracked for expiration 
●​ Audit logs retained per institutional policy 

Best Practices for Institutions 

1. LTI Deployment 

●​ Use separate deployments per institution/faculty/department 



 

●​ Generate unique RSA keys per platform 
●​ Enable the institutional management feature flag 
●​ Test in the sandbox environment first 

2. OAuth Integration 

●​ Use institution-specific client credentials 
●​ Configure appropriate scopes (minimal required) 
●​ Set up proper redirect URIs 
●​ Test authentication flow thoroughly 

3. Access Control 

●​ Assign ownership at appropriate hierarchy level 
●​ Use faculty/department scoping when possible 
●​ Regularly audit integration access 
●​ Monitor gradebook submission logs 

4. User Onboarding 

●​ Pre-register users when possible (auto-create disabled by default) 
●​ Provide clear instructions for LTI/OAuth setup 
●​ Test with pilot group before full rollout 
●​ Monitor error logs during initial deployment 

 

Changelog 

Version 1.0 (Current) 

●​ LTI 1.3 dynamic registration support 
●​ Canvas and D2L OAuth integration 
●​ Google OAuth providers 
●​ Assignment and Grade Services (AGS) implementation 
●​ Deep Linking support 
●​ Hierarchical access control 
●​ Comprehensive audit logging 


	LTI/API Scoping Documentation 
	LTI 1.3 Integration 
	Overview 
	Supported LTI Features 
	1. Dynamic Registration 
	2. OIDC Login Flow 
	3. LTI Launch 
	4. Deep Linking 
	5. Assignment and Grade Services (AGS) 

	LTI Claims Utilized 
	Standard LTI Claims 
	Assignment and Grade Services Claims 
	Deep Linking Claims 

	LTI Scopes Required 
	From Platform Configuration 

	LTI Placements 
	Course Navigation 
	Assignment Selection (Deep Linking) 

	JWKS Endpoint 
	Role Detection 
	Instructor Roles (Full Access) 
	Student Roles (Limited Access) 


	Canvas API Integration 
	Overview 
	OAuth 2.0 Configuration 
	Authorization Flow 
	OAuth Endpoints 

	Canvas API Endpoints Used 
	1. User Information 
	2. Course List 
	3. Course Content 

	API Scopes 
	Integration Setup Requirements 
	Required Configuration 
	Database Storage 


	D2L (Brightspace) API Integration 
	Overview 
	OAuth 2.0 Configuration 
	Authorization Flow 
	OAuth Endpoints 

	D2L API Endpoints Used 
	1. User Information 
	2. Course List (Not currently released to production) 

	API Scopes 
	Integration Setup Requirements 
	Required Configuration 
	Database Storage 


	OAuth Provider Integrations 
	Google OAuth 2.0 
	Configuration 
	Endpoints 
	User Data Retrieved 

	OAuth Status Check 
	Endpoint 
	Response Example 

	OAuth Unlinking 
	Endpoint 


	Security and Best Practices 
	LTI Security 
	1. State and Nonce Management 
	2. JWT Validation 
	3. Platform Registration 
	4. Grade Passback Security 

	OAuth Security 
	1. Token Management 
	2. State Parameter 
	3. HTTPS Enforcement 

	API Security 
	1. Authorization Checks 
	2. Access Token Validation 
	3. Rate Limiting 

	Data Privacy 
	1. User Data 
	2. LTI User Identifiers 
	3. Session Management 

	Audit and Compliance 
	1. Grade Passback Audit Log 
	2. Access Logs 
	3. Data Retention 

	Best Practices for Institutions 
	1. LTI Deployment 
	2. OAuth Integration 
	3. Access Control 
	4. User Onboarding 


	Changelog 
	Version 1.0 (Current) 



